30 research outputs found

    Exclusion statistics: A resolution of the problem of negative weights

    Full text link
    We give a formulation of the single particle occupation probabilities for a system of identical particles obeying fractional exclusion statistics of Haldane. We first derive a set of constraints using an exactly solvable model which describes an ideal exclusion statistics system and deduce the general counting rules for occupancy of states obeyed by these particles. We show that the problem of negative probabilities may be avoided with these new counting rules.Comment: REVTEX 3.0, 14 page

    Group velocity of neutrino waves

    Get PDF
    We follow up on the analysis of Mecozzi and Bellini (arXiv:1110:1253v1) where they showed, in principle, the possibility of superluminal propagation of neutrinos, as indicated by the recent OPERA result. We refine the analysis by introducing wave packets for the superposition of energy eigenstates and discuss the implications of their results with realistic values for the mixing and mass parameters in a full three neutrino mixing scenario. Our analysis shows the possibility of superluminal propagation of neutrino flavour in a very narrow range of neutrino parameter space. Simultaneously this reduces the number of observable events drastically. Therefore, the OPERA result cannot be explained in this frame-work.Comment: 10 pages revtex with 2 figures. Important changes have been made; in particular, it has been revised to include a discussion on the nature of the measurement and its impact on the resul

    Exact Multiplicities in the Three-Anyon Spectrum

    Full text link
    Using the symmetry properties of the three-anyon spectrum, we obtain exactly the multiplicities of states with given energy and angular momentum. The results are shown to be in agreement with the proper quantum mechanical and semiclassical considerations, and the unexplained points are indicated.Comment: 16 pages plus 3 postscript figures, Kiev Institute for Theoretical Physics preprint ITP-93-32

    On the Quantum Density of States and Partitioning an Integer

    Full text link
    This paper exploits the connection between the quantum many-particle density of states and the partitioning of an integer in number theory. For NN bosons in a one dimensional harmonic oscillator potential, it is well known that the asymptotic (N -> infinity) density of states is identical to the Hardy-Ramanujan formula for the partitions p(n), of a number n into a sum of integers. We show that the same statistical mechanics technique for the density of states of bosons in a power-law spectrum yields the partitioning formula for p^s(n), the latter being the number of partitions of n into a sum of s-th powers of a set of integers. By making an appropriate modification of the statistical technique, we are also able to obtain d^s(n) for distinct partitions. We find that the distinct square partitions d^2(n) show pronounced oscillations as a function of n about the smooth curve derived by us. The origin of these oscillations from the quantum point of view is discussed. After deriving the Erdos-Lehner formula for restricted partitions for the s=1s=1 case by our method, we generalize it to obtain a new formula for distinct restricted partitions.Comment: 17 pages including figure captions. 6 figures. To be submitted to J. Phys. A: Math. Ge

    Quantum Mechanics and Thermodynamics of Particles with Distance Dependent Statistics

    Full text link
    The general notion of distance dependent statistics in anyon-like systems is discussed. The two-body problem for such statistics is considered, the general formula for the second virial coefficient is derived and it is shown that in the limiting cases it reproduces the known results for ideal anyons.Comment: 9 pages, LATEX Kiev Institute for Theoretical Physics preprint ITP-93-5E, January 199

    Exact first-order density matrix for a d-dimensional harmonically confined Fermi gas at finite temperature

    Full text link
    We present an exact closed form expression for the {\em finite temperature} first-order density matrix of a harmonically trapped ideal Fermi gas in any dimension. This constitutes a much sought after generalization of the recent results in the literature, where exact expressions have been limited to quantities derived from the {\em diagonal} first-order density matrix. We compare our exact results with the Thomas-Fermi approximation (TFA) and demonstrate numerically that the TFA provides an excellent description of the first-order density matrix in the large-N limit. As an interesting application, we derive a closed form expression for the finite temperature Hartree-Fock exchange energy of a two-dimensional parabolically confined quantum dot. We numerically test this exact result against the 2D TF exchange functional, and comment on the applicability of the local-density approximation (LDA) to the exchange energy of an inhomogeneous 2D Fermi gas.Comment: 12 pages, 3 figures included in the text, RevTeX4. Text before Eq.(25) corrected. Additional equation following Eq.(25) has been adde

    Equivalence of the Calogero-Sutherland Model to Free Harmonic Oscillators

    Full text link
    A similarity transformation is constructed through which a system of particles interacting with inverse-square two-body and harmonic potentials in one dimension, can be mapped identically, to a set of free harmonic oscillators. This equivalence provides a straightforward method to find the complete set of eigenfunctions, the exact constants of motion and a linear W1+∞W_{1+\infty} algebra associated with this model. It is also demonstrated that a large class of models with long-range interactions, both in one and higher dimensions can be made equivalent to decoupled oscillators.Comment: 9 pages, REVTeX, Completely revised, few new equations and references are adde

    Fractional Exclusion Statistics and Anyons

    Full text link
    Do anyons, dynamically realized by the field theoretic Chern-Simons construction, obey fractional exclusion statistics? We find that they do if the statistical interaction between anyons and anti-anyons is taken into account. For this anyon model, we show perturbatively that the exchange statistical parameter of anyons is equal to the exclusion statistical parameter. We obtain the same result by applying the relation between the exclusion statistical parameter and the second virial coefficient in the non-relativistic limit.Comment: 9 pages, latex, IFT-498-UN

    Statistical properties and statistical interaction for particles with spin: Hubbard model in one dimension and statistical spin liquid

    Full text link
    We derive the statistical distribution functions for the Hubbard chain with infinite Coulomb repulsion among particles and for the statistical spin liquid with an arbitrary magnitude of the local interaction in momentum space. Haldane's statistical interaction is derived from an exact solution for each of the two models. In the case of the Hubbard chain the charge (holon) and the spin (spinon) excitations decouple completely and are shown to behave statistically as fermions and bosons, respectively. In both cases the statistical interaction must contain several components, a rule for the particles with the internal symmetry.Comment: (RevTex, 16 pages, improved version

    A novel realization of the Calogero-Moser scattering states as coherent states

    Full text link
    A novel realization is provided for the scattering states of the NN-particle Calogero-Moser Hamiltonian. They are explicitly shown to be the coherent states of the singular oscillators of the Calogero-Sutherland model. Our algebraic treatment is straightforwardly extendable to a large number of few and many-body interacting systems in one and higher dimensions.Comment: 9 pages, REVTe
    corecore